

INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL EXT-21-63619
]

Structural Health

Monitoring of Microreactor

Safety Systems Using

Convolutional Neural

Networks

July 2021

Erin Yan,

Carnegie Mellon University

Piyush Sabharwall,

Idaho National Laboratory

Harleen Kaur Sandhu, Saran Srikanth Bodda, Abhinav Gupta, and Xu Wu

North Carolina State University

DISCLAIMER

This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any

agency thereof, nor any of their employees, makes any warranty, expressed

or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness, of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately

owned rights. References herein to any specific commercial product,

process, or service by trade name, trade mark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation,

or favoring by the U.S. Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect

those of the U.S. Government or any agency thereof.

INL EXT-21-63619

Structural Health Monitoring of Microreactor Safety
Systems Using Convolutional Neural Networks

Erin Yan,
Carnegie Mellon University

Piyush Sabharwall,
Idaho National Laboratory

Harleen Kaur Sandhu, Saran Srikanth Bodda, Abhinav Gupta, and Xu Wu
North Carolina State University

July 2021

Idaho National Laboratory
Originating Organization [optional]

Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Office of _______
Under DOE Idaho Operations Office

Contract DE-AC07-05ID14517

Page intentionally left blank

 iii

ABSTRACT

Microreactors are a class of modular reactors, which have innovative

applications in nuclear and nonnuclear industries due to their portability,

reliability, resilience, and high capacity factors. In order to operate microreactors

on a wider scale, it is essential to bring down maintenance life-cycle costs while

ensuring the integrity of operating such systems. Autonomous operations in

microreactors using augmented digital-twin (DT) technology can serve as a cost-

effective solution by increasing awareness about the system’s health. Structural

health monitoring (SHM) is a key component of nuclear DT frameworks.

Artificial neural networks can be beneficial to detect degradation in the nuclear

safety systems, such as piping equipment systems, by monitoring the sensor data

obtained from the plant and its corresponding structures, systems and

components. In this report, an SHM methodology is presented which uses

convolutional neural networks to determine degraded locations and their

corresponding degradation-severity levels at various locations of nuclear piping

equipment systems. A simple pipe system, subjected to seismic loads, is selected

to design the post-hazard SHM framework. The effectiveness of the proposed

SHM methodology is demonstrated by obtaining high accuracy in detecting

degraded locations as well as the severity levels.

 iv

Page intentionally left blank

 v

CONTENTS
ABSTRACT ... iii

ACRONYMS ... viii

1. INTRODUCTION... 10

1.1 OVERVIEW OF ARTIFICIAL NEURAL NETWORKS ... 11

1.2 Feed Forward Networks ... 11

1.3 Recurrent Neural Network ... 12

1.4 Convolutional Neural Networks .. 13

2. PROJECT DESCRIPTION ... 13

3. METHODOLOGY .. 14

3.1 Data Preprocessing ... 14

3.2 Creating the Convoluted Neural Network .. 15

3.3 RESULTS .. 16

4. FUTURE WORK .. 17

5. ACKNOWLEDGEMENTS .. 18

6. REFERENCES .. 18

Appendix A Creatiing the CNN .. 21

FIGURES

Figure 1. Single neuron. .. 11

Figure 2. Feed-forward network (FFN). ... 12

Figure 3. RNN. .. 12

Figure 4. CNN. .. 13

Figure 5. Simple piping system... 14

Figure 6. STFT surface plot of each direction of each sensor. ... 15

Figure 7. CNN architecture. .. 15

Figure 8. Sensor optimization. .. 17

Figure 9. Importing analytic programs and mounting Google Drive. ... 21

Figure 10. Standardizing random shuffling of the data. .. 21

Figure 11. Data iteration. .. 22

Figure 12. Data flattening. .. 22

Figure 13. Data normalization. ... 22

Figure 14. Separating data between training and testing groups... 23

Figure 15. Setting parameters and hyperparameters. .. 23

Figure 16. Creating the CNN. ... 24

 vi

Figure 17. Running the model. ... 25

Figure 18. Final data run. .. 25

TABLES

Table 1. ANN training parameters. ... 16

Table 2. Accuracy of proposed SHM framework. .. 17

 vii

Page intentionally left blank

 viii

ACRONYMS

AI artificial intelligence

ANN artificial neural networks

CNN convolutional neural networks

DT digital twin

FFN feed-forward network

GPU graphics-processing unit

GRU gated recurrent unit

LOCA loss of coolant accident

LSTM long short-term memory

NAMAC Nearly Autonomous Management and Control

NDT non-destructive testing

OM operation and manufacturing

RNN recurrent neural networks

SHM structural health monitoring

STFT short-time Fourier transform

TPU tensor-processing unit

USNRC United States Nuclear Regulatory Commission

 ix

Page intentionally left blank

 10

Structural Health Monitoring of Microreactor Safety
Systems Using Convolutional Neural Networks

1. INTRODUCTION

Microreactors have the potential to provide factory-fabricated, safe, and transportable nuclear energy

to civilian, industrial, and defense industries. Despite their relatively small physical footprint, they can

provide up reliable and long-lasting clean energy that will not require refueling for years. These novel

features open new potential for nuclear-reactor applications in traditionally non-nuclear markets.

However, due to the smaller energy output levels of microreactors, operation and manufacturing (OM)

costs could be significant due to economies of scale when compared to larger units. These restrictions

limit the possibility of having as many supervisory personnel as traditional reactors. Reactor autonomy

could enable minimized operations staffing that could allow for cost competitiveness, shorter response

times, and newer reactor concepts. Thus, in order for microreactors to become more widespread while

maintaining the integrity of safe operations, it is imperative that some level of autonomy be implemented.

With advances in control algorithms and artificial intelligence, autonomy in microreactors by utilizing

the digital-twin (DT) concept [1–7] looks achievable. In reactor autonomy, there are various degrees of

automation, ranging from providing action alternatives to deciding and acting independently without an

operator. Choosing a level of autonomy depends on the tradeoff between staffing, operational flexibility,

system flexibility, and safety. A highly autonomous system should demonstrate reliability with little

human assistance and be able to process all operating modes by planning actions based on sensor data

and identifying the subsequent consequences of its actions.

Artificial neural networks (ANNs) can be used to develop an autonomous reactor-control system.

Structural health monitoring (SHM) is an important component of the DT framework for any nuclear

power plant (NPP) [8–11]. In the proposed research, an SHM methodology is developed for the safety

systems of nuclear reactors, such as the piping equipment systems that carry coolants (such as water,

sodium, gas, or molten salt) to the reactor vessel and steam to the turbine. A compromise on the structural

integrity of piping equipment systems, like a crack or fissure, can result in nuclear accidents such as a loss

of coolant accident (LOCA). Thus, maintaining the operational functionality of such safety systems is

required. However, the current non-destructive testing (NDT) techniques applied on nuclear piping

equipment systems can be time and cost intensive. An SHM framework with the ability to detect locations

with all levels of degradation—minor, moderate, or severe—could act as an additional aid to current NDT

techniques. It could also prove to be economical by collecting sensor data from the system after an

external-hazard scenario, such as an earthquake, and detecting degraded locations to aid NDT procedures,

thereby reducing reactor outage periods.

The proposed research focuses on developing an SHM framework for detecting degradation in

nuclear safety systems, such as piping equipment systems, by employing state-of-the-art artificial

intelligence (AI) algorithms on acquired sensor data [10, 11]. A proof of concept using convolutional

neural networks (CNNs) is explored by collecting sensor data from high-fidelity synthetic simulations for

a simple piping system subjected to seismic hazards. Processing large amounts of data and extracting

degradation-sensitive features remains a fundamental challenge of any robust SHM methodology. In this

study, signal processing and feature extraction are carried out on the acquired sensor data in order to

create a data repository of degradation-sensitive quantities used to train the CNN algorithms.

Effectiveness of a sensor-placement strategy is also investigated. The efficiency of the proposed AI SHM

framework is demonstrated for a post-hazard scenario in nuclear piping-equipment systems.

 11

2. OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

Deep learning through artificial neural networks can be applied in many applications that are hard to

traditionally program such as imaging classification, speech recognition, natural language processing, and

object tracking. They are able to model non-linear and complex problems as well as predict based on

unseen data. Inspired by the biological neural networks, artificial neural networks (ANNs) are made of a

group of connected artificial neurons (see Figure 1). Each neuron takes in a signal and, after processing,

returns another signal to connecting neurons. In each node and connection (edge) there is a weight that is

adjusted throughout the learning. Edges are neurons, usually organized in layers, that are

interconnected. Multilayer ANNs use back-propagation where the outputs are compared with the correct

answer and the difference is put through a loss function. Then the error is fed back through the network

so that the model can learn from it.

Not all problems can be solved in a linear fashion, so activation functions must be used to capture

non-linear relationships. An activation function also makes the input more useful for the next layer. For

example, the most-popular activation function, reLU, simply returns the input value if it is greater than 0,

and it returns 0 if the input is less than 0. This makes it easier and faster for the model to handle.

Figure 1. Single neuron.

2.1 Feed-Forward Networks

The simplest way to organize layers of neurons is in feed-forward layers, meaning data only moves in

the forward direction. The first layer takes in the input, and the last layer produces outputs. The middle

layers are called hidden layers because they are not connected to the outside world. Each neuron in the

hidden layer gets the output of all neurons in the previous layer, and if the sum is greater than a threshold,

the neuron returns 1. Otherwise, it returns -1. The hidden layer functions as a distiller and finds

important features from the input and passes them to the next layer.

When training an ANN, the network first does a forward pass and makes a prediction. The

prediction is then compared to the correct result through a specified loss function and the error value

is back-propagated through the network to find the gradient. Gradients are how much a network

needs to adjust in one layer, but gradients for future layers depend on the gradient of the past layer

(see Figure 2). This leads to a diminishing gradient which can lead to minimal learning.

 12

Figure 2. Feed-forward network (FFN).

2.2 Recurrent Neural Network

Recurrent neural networks (RNNs) are another common class of ANNs that use time-series or

sequential data. Instead of keeping inputs and outputs separated, as do FFNs, RNNs assume that the input

and outputs are dependent. Outputs from previous inputs are called hidden states and are considered when

calculating the outputs of future inputs. However, as an RNN processes more steps, it suffers from short-

term memory because it contains data of all previous outputs (see Figure 3). As with FFNs, back-

propagation leads to vanishing gradients in RNNs. As the network goes through each time stamp, the

gradient will shrink exponentially. Smaller gradients lead to smaller adjustments in earlier layers,

meaning they will not learn. Due to this issue, long short-term memory (LSTM) and gated recurrent unit

(GRU) were created. By using gates, these models can minimize short-term memory through adding and

removing from the hidden state. Despite its drawback from short-term memory, RNNs are an excellent

choice for neural networks due to their consideration of past information and consistent model size, even

with additional input. RNNs are not able to predict labeled data or classify data without their output being

processed by a different type of ANN. Hence, in this study, we have not investigated RNNs.

Figure 3. RNN.

 13

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep neural networks that can be used for image

classification requiring little data preprocessing. They can be used over a large amount of sensor data

without requiring prior knowledge or human interference in feature mapping. Like other FFNs, CNNs

contain an input layer, at least one hidden layer, and an output layer. The input layer usually is a tensor

that has a certain shape. The convoluted layer uses convolution-kernel slides across the input and

generates a feature map for future layers. Filter sizes and strides can be modified to optimize the model.

The convoluted layer is customarily used adjacent to other layers, such as pooling normalization layers

and fully connected layers. Pooling layers take the maximum or average of the current view to prevent

overfitting the data. Fully connected layers are usually used at the end of the model to optimize objectives

(see Figure 4). In this research, CNN architectures and key parameters, sensor placement strategy and

various data-handling techniques are investigated as a part of the proposed SHM methodology.

Figure 4. CNN.

3. PROJECT DESCRIPTION

Many components, along with information about their current state, can govern the operational

functionality of nuclear facilities. One such component is the distributed piping equipment safety system,

which connects one equipment, such as the reactor, a pump, steam generator, to another. When nuclear

reactors have been operational for some time period, their piping equipment systems can experience pipe-

wall thinning and subsequent reduction in structural stiffness due to phenomena such as flow-assisted

erosion and corrosion [12]. Thus, degradation in these systems can be characterized as a reduction in the

cross-sectional area of piping elements. Usually, discontinuities, such as elbows, t-joints, and nozzles, in

the system experience greater degradation from pipe-wall thinning [13–18]. An SHM framework can

prove to be beneficial in extracting information about the system’s current, degraded state. This can result

in an increased level of monitoring, control, supervision, and security by allowing the operators to obtain

knowledge about the degradation severity at various locations of a safety system instead of relying on a

predetermined maintenance schedule.

Machine-learning algorithms, specifically ANNs, can be used to design a robust SHM framework and

to detect the condition of reactor subsystems. Large amounts of sensor data can be acquired from such

nuclear safety systems. As a subset of ANNs, CNNs can be employed as a powerful tool to process, store,

and train on this sensor data [19]. Degradation is characterized as minor, moderate, or severe. To

develop a post-hazard health-monitoring framework that detects degraded locations as well as the

severity of degradation, a simple pipe system, subjected to a collection of 100 earthquakes, is selected as

the case study. The simple piping equipment system selected for the first case study is quite similar, but

not identical, to a United States Nuclear Regulatory Commission (USNRC) piping benchmark problem

[20].

 14

4. METHODOLOGY

4.1 Data Preprocessing

Vibration-based monitoring is used for a variety of civil-engineering applications to detect changes

that may indicate damage or degradation. A finite element model of the simple piping system was created

using ANSYS FE software. Seismic loads were applied to the model, and high-fidelity simulations were

carried out to acquire sensor data in the form of acceleration-time-series signals to capture the

phenomenon of degradation in nuclear piping equipment systems. The sensor response acquired from

simulation contains over 30 Gb of data storage. A total of nine sensor locations (as shown in Figure 5) are

considered and degradation is assumed to occur at one location at any given time.

Figure 5. Simple piping system.

Due to the large amount of data acquired, a computationally effective data-processing and storage

technique had to be implemented to store the acceleration-time-series data. Using the SciPy [21] short-

time Fourier transform (STFT) [22] module, the time series data of each direction of each sensor was

transformed into a three-dimensional (3D) array with frequency, time, and STFT magnitude as its axis.

Then the plots were cropped at 100 hz because the STFT magnitude after 100 hz was mostly zero. For

each simulation, the STFT surface plots were consolidated into a Pickle file [23] so they could be

compactly stored in a machine-learning data repository. Pickle storage was chosen over Tensorflow

Records [24] due to its faster saving and loading time in this particular case study (see Figure 6).

 15

Figure 6. STFT surface plot of each direction of each sensor.

4.2 Creating the Convoluted Neural Network

From previous literature [19], it is known that a CNN created using Python’s Keras library

[25] can be used to analyze STFT plots. In this, a similar structure was used, but with three convolutional

layers instead of four due to the smaller size of our plots. Because a max pooling layer sits between every

layer to enhance feature extraction, image resolution decreases after each layer. This limits the possible

depth of the model. A dropout, which is a percentage of neurons that are randomly ignored is also

implemented after each layer to prevent overfitting. The two-dimensional (2D) CNN model (see Figure 7)

is constructed to be trained over 100 epochs using the STFT data for image classification. The rectified

linear activation function (reLU) was selected as the activation function for each layer due to its speed

and ability to overcome the vanishing-gradient problem. Softmax was then selected as the output-layer

activation due to its performance on multiclass classification problems. An adaptive learning rate was

implemented so that the learning rate would decrease on plateau.

Figure 7. CNN architecture.

After feature extraction is performed by the convolutional layers, the results are fed into three dense

layers for classification. Fewer neurons were used, as compared to the previous study, to prevent

overfitting due to the smaller plot sizes. In order to find the most-optimal hyperparameters, a grid search

was conducted on the values 0.01,0.001, and 0.0001 for the learning rate as well as 128, 256, and 512 for

the batch sizes. The grid search ran all nine possibilities, and the most optimum learning rate and batch

size were selected (Table 1). This SHM framework for the post-hazard management of nuclear safety

systems was able to demonstrate its effectiveness in detecting degraded locations as well as the

degradation severity.

 16

Table 1. ANN training parameters.

Parameter Value

Activation Functions ReLu and SoftMax

Epochs 200

Learning Rate 0.001

Batch Size 256

Dropout 0.3

Optimization ADAM

Validation Split 30%

On a traditional desktop machine (16Gb of RAM) with graphics-processing unit (GPU) capabilities,

each epoch took about 30 minutes. Running 200 epochs on such a machine would be impractical and

inefficient. The relative effectiveness of using a central processing unit, GPU, and tensor-processing unit

(TPU) was explored to find a more-efficient solution. By implementing the code on Google Colaboratory

(25 Gb of RAM) with a TPU, each epoch only took a few seconds. This opened up the possibilities of

testing different CNN architectures and hyperparameters, as described above.

After selecting hyperparameters, the model predicted, from the data of nine sensors, degraded

locations and degradation levels. From previous studies [15], it was known that degradation happens

mostly on nozzles (anchors), elbows, and T-joints of a piping system, so sensors can be reduced to just

the four on the elbows. The model predicted both locations and degradation levels, as well locations

using only reduced sensor data.

5. RESULTS

An accuracy of 99% was achieved to detect degraded locations. The proposed framework was able to

detect degraded locations along with their severity level with a 96% prediction accuracy. For the SHM of

real structures and systems, it is not possible to put sensors at all locations. To decrease the economic and

computational cost of dealing with a large number of sensors, as with the nine sensors detailed in the

previous section, this research also explored the effects of a sensor-placement strategy. Only four sensors

at the elbows, shown in Figure 8 were selected to acquire sensor response as time-series signals.

 17

Figure 8. Sensor optimization.

The proposed SHM framework was able to predict degraded locations with 98% accuracy. A 97%

accuracy was achieved when degradation severities were also added as the predicted output. It is

observed that the proposed methodology is very effective for the health monitoring of the simple piping

equipment system being considered. Even with reduced sensors, the CNN model was able to learn

effectively, thereby increasing confidence in the selected sensor-placement strategy. The results from this

application case study are tabulated in Table 2. When the dropout rate was increased for the 9 sensor

framework, the model had slightly better results but it was not significant.

Table 2. Accuracy of proposed SHM framework.

Number of

Sensors

Predict Locations Predict Locations

and Severity

9 99% 96%

4 98% 97%

It is observed that using only four sensors with this sensor-placement strategy yields better

prediction accuracies. The phenomenon of overfitting can reduce predictive capability of any ANN

model. Hence, in this case study, the amount of data acquired from nine sensors overfits the 2D CNN

model when compared to the data acquired from only four sensors.

6. FUTURE WORK

Due to the larger amount of data when using nine sensors, it was expected that the nine-sensor model

would have significantly better results than the four-sensor model. This was not seen in the results due to

overfitting. To overcome this challenge, k-fold cross-validation technique can be applied in the future. In

 18

this method, the data would be split into k-many groups, and each group would be individually used as

the test set, with the rest as a training set.

While this model was built from a simple piping system, it provides the foundation to be applied to

realistic nuclear piping-equipment systems more-complex systems—such as the Experimental Breeder

Reactor-II multibranched piping system—and to predicting degradation at multiple locations within a

system.

7. ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Piyush Sabharwall for guiding me throughout

this project. His patient guidance and supportive encouragement during this internship has helped me

develop as a researcher. The completion of this project would not be possible without the valuable

support of Harleen Kaur Sandhu and Dr. Saran Srikanth Bodda. Their knowledge on the project and

enthusiasm to help has changed my internship experience for the better. I am also extremely grateful

to Dr. Abhinav Gupta for his unwavering support and his willingness to give his time. I would also

like to thank the following people: Majdi I. Radaideh, Cody Walker, Jacob Farber, Yifeng Che, and

Curtis Smith for hosting the MIT-INL AI/ML Summer 2021 Symposium. Lastly, I am deeply

indebted to the Idaho National Laboratory and ORISE for allowing me to participate in this

internship. This experience has meant a lot to me, and I appreciate this amazing opportunity given to

me.

8. REFERENCES

 M. Grieves, “Digital Twin: Manufacturing Excellence through Virtual Factory Replication,”

(2014)URL

http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcelle

nce.php.

 L. Lin, P. Athe, P. Rouxelin, M. Avramova, A. Gupta, R. Youngblood,

 J. Lane, and N. Dinh, “Development and assessment of a nearly autonomous management

and control system for advanced reactors,” Annals of Nuclear Energy, 150, 107861 (2021);

10.1016/j.anucene.2020.107861. https://linkinghub.elsevier.

com/retrieve/pii/S0306454920305594.

 NAMAC, “Development of a Nearly Autonomous Management and Control (NAMAC)

System for Advanced Reactors,” (2018) https://arpa-e.energy.gov/?q=slick-sheet-

project/management-and-control-system-advanced-reactors.

 B. R. Upadhyaya, K. Zhao, S. R. Perillo, X. Xu, and M. G. Na, “Autonomous Control of

Space Reactor Systems,”; 10.2172/920996., URL https://www.osti.gov/ biblio/920996.

 R. T. Wood, “Autonomous Control for Generation IV Nuclear Plants,” 6.

 H. Basher, “Autonomous Control of Nuclear Power Plants,” ORNL/TM- 2003/252, 885601

(2003); 10.2172/885601., URL http://www.osti.gov/servlets/ purl/885601-TNIDBO/.

 Varuttamaseni, S. Yoo, and A. Borrelli, “Adaptive Control and Monitoring Platform for

Autonomous Operation of Advanced Nuclear Reactors,” 1.

 E. A. Patterson, R. J. Taylor, and M. Bankhead, “A framework for an integrated nuclear

digital environment,” Progress in Nuclear Energy, 87, 97 (2016);

10.1016/j.pnucene.2015.11.009., URL https://linkinghub.elsevier.com/retrieve/

pii/S0149197015301104.

 E. A. Patterson, S. Purdie, R. J. Taylor, and C. Waldon, “An integrated digital framework for

the design, build and operation of fusion power plants,” Royal Society Open Science, 6, 10,

http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php
http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php
http://www.apriso.com/library/Whitepaper_Dr_Grieves_DigitalTwin_ManufacturingExcellence.php
https://linkinghub.elsevier.com/retrieve/pii/S0306454920305594
https://linkinghub.elsevier.com/retrieve/pii/S0306454920305594
https://linkinghub.elsevier.com/retrieve/pii/S0306454920305594
https://www.osti.gov/biblio/920996
https://www.osti.gov/biblio/920996
http://www.osti.gov/servlets/purl/885601-TNIDBO/
http://www.osti.gov/servlets/purl/885601-TNIDBO/
https://linkinghub.elsevier.com/retrieve/pii/S0149197015301104
https://linkinghub.elsevier.com/retrieve/pii/S0149197015301104
https://linkinghub.elsevier.com/retrieve/pii/S0149197015301104

 19

181847 (2019); 10.1098/rsos.181847., URL https://

royalsocietypublishing.org/doi/10.1098/rsos.181847.

 Gupta, H. K. Sandhu, S. S. Bodda, L. Lin, P. Athe, N. Dinh, J. Lane, and R. Youngblood,

“Development of a Nearly Autonomous Management and Control System (NAMAC) for

Advanced and Micro Reactors,” SAIMIN: Symposium on Artificial Intelligence, Machine

Learning and other Innovative Technologies in Nuclear Industry (2020).

 H. K. Sandhu, S. S. Bodda, and A. Gupta, “Structural Health Monitoring of Piping-

Equipment Systems in Nuclear Power Plants using Artificial Neural Networks,” 10th

International Conference on Structural Health Monitoring of Intelligent Infrastructure

(2020).

 P. C. Wu, “Erosion/Corrosion-Induced Pipe Wall Thinning in U.S. Nuclear Power Plants,”

NUREG–1344, 6152848 (1989); 10.2172/6152848., URL http://www.osti.

gov/servlets/purl/6152848/.

 B. S. Ju and A. Gupta, “Seismic fragility of threaded Tee-joint connections in piping

systems,” International Journal of Pressure Vessels and Piping, 132-133, 106 (2015);

10.1016/j.ijpvp.2015.06.001., URL https://linkinghub.elsevier.com/

retrieve/pii/S0308016115000708.

 Y. Ryu, A. Gupta, W. Jung, and B. Ju, “A Reconciliation of Experimental and Analytical

Results for Piping Systems,” International Journal of Steel Structures, 14 (2016).

 Gupta, Y. Ryu, and R. K. Saigal, “Performance-Based Reliability of ASME Piping Design

Equations,” Journal of Pressure Vessel Technology, 10 (2017).

 Y. Ryu, “Fragility of Piping Systems and Reliability of Piping Components,” PhD Thesis,

North Carolina State Univeristy (2013).

 M. Nifong, “Uncertainty of Threaded Piping Subjected to Monotonic Loading,” PhD Thesis,

North Carolina State Univeristy (2014).

 B. S. Ju, “Seismic Fragility of Piping System,” PhD Thesis, North Carolina State Univeristy

(2011).

 DATAmadness, “Time signal classification using CNN,” https://github.com/

datamadness/Time-signal-classification-using-Convolutional-Neural-Network (2019).

 P. Bezler, M. Hartzman, and M. Reich, “Piping Benchmark Problems,” NUREG– 1677

(1980).

 P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, van der Walt, M. Brett, J.

Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.

Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,

I. Henriksen, Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van

Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific

Computing in Python,” Nature Methods, 17, 261 (2020); 10.1038/s41592-019-0686-2.

 J. B. Allen, “Short Time Spectral Analysis, Synthesis, and Modification by Discrete Fourier

Transform,” ASSP-25 (3), 235–238 (1977); 10.1109/TASSP.1977.1162950.

 G. Van Rossum, The Python Library Reference, release 3.8.2, Python Software Foundation

(2020).

 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J.

Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R.

Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

https://royalsocietypublishing.org/doi/10.1098/rsos.181847
https://royalsocietypublishing.org/doi/10.1098/rsos.181847
https://royalsocietypublishing.org/doi/10.1098/rsos.181847
http://www.osti.gov/servlets/purl/6152848/
http://www.osti.gov/servlets/purl/6152848/
http://www.osti.gov/servlets/purl/6152848/
https://linkinghub.elsevier.com/retrieve/pii/S0308016115000708
https://linkinghub.elsevier.com/retrieve/pii/S0308016115000708
https://linkinghub.elsevier.com/retrieve/pii/S0308016115000708
https://github.com/datamadness/Time-signal-classification-using-Convolutional-Neural-Network
https://github.com/datamadness/Time-signal-classification-using-Convolutional-Neural-Network
https://github.com/datamadness/Time-signal-classification-using-Convolutional-Neural-Network

 20

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.

Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y.

Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems,” (2015)URL http://tensorflow.org/, software available from tensorflow.org.

 F. Chollet, “Keras,” https://github.com/fchollet/keras (2015).

http://tensorflow.org/
https://github.com/fchollet/keras

 21

Appendix A

Creating the CNN

A-1. Initializing the Environment

The first step in our code was to initialize what we needed to run in order to setup the data,

neural network, and other data structures. Popular data analytic programs like Numpy, Pandas,

and SkLearn were imported as well as Tensorflow and Keras functions. Then Google Drive was

mounted in order to access the data (Figure 9).

Figure 9. Importing analytic programs and mounting Google Drive.

Because data for testing and training need to eventually be shuffled, we introduced a random seed so

the random shuffle is standardized. Then we connected the file to the built in Google Colaboratory TPU

for a faster runtime (Figure 10).

Figure 10. Standardizing random shuffling of the data.

A-2. Data Preprocessing

Because we need to introduce damage to five nodes, ncount, the variable for node count, is set to 5.

Then, depending on whether we are testing for all data for just the location the number of labels,

num_labels is set to 15 (for location and degradation of 5 locations * 3 degradation levels) or five (for

locations only). Then the Pickle data from the folder are iterated through twice for loops and appended

into xdata and ydata (Figure 11).

 22

Figure 11. Data iteration.

The data is flattened using itertools.chain.from_itertools() so it can be easily reshaped. Then items in

that list were converted to a numpy array with float values. The data were then normalized and then

reshaped to fit the CNN model and converted to a tensor so it can be inputted into a neural network later

(Figure 12). The data is then split into testing and training data.

Figure 12. Data flattening.

In order to normalize the data we divided all values with respect to the maximum value. This creates

values between 0 and 1 for the inputs in the neural network (Figure 13). Because reLU ignores values

under 0 and keeps values above 0, if a number is negative, data may be lost, but if a value is too large, it

may be too-heavily weighted.

Figure 13. Data normalization.

In this function, xdata and ydata are shuffled and then split into training and testing data.

Seventy percent of the data is set for training data, and 30% for testing. The testing data for x

and y are then put into testX and testY respectively. Likewise, the training data for x and y were

put into trainX and trainY (Figure 14).

 23

Figure 14. Separating data between training and testing groups.

A-3. Building the CNN

The parameter that needed to be initialized were set such as the activation functions, pool size, kernel

size, and number of epochs. There is an option for user input for hyperparameters such as learning rate

and batch size for use during testing (Figure 15).

Figure 15. Setting parameters and hyperparameters.

 24

Our CNN structure uses 2D convolution layers as well as max pooling, dropout, and dense layers.

The CNN has three convoluted layers, each with each subsequent layer-doubling in the number of

neurons. All three layers use reLU as an activation function. There is a max-pooling layer after each

convoluted layer to emphasize the features extracted in the convoluted layer. A dropout is used to prevent

overfitting in the data. Then the output of the convoluted layers is fed into dense layers so that the dense

layers can find the classifications after the convoluted layers extract the features (Figure 16).

Figure 16. Creating the CNN.

The testing function is what calls the cnnstructure function. In here, we set the optimizer to Adam and

the learning rate based on what we selected in the first code block of this section. Then, depending on

testing or training, we run the model on a validation split or testing data (Figure 17). The CNN is called

under the TPU strategy scope so the code will be trained under the TPU.

 25

Figure 17. Running the model.

Depending on the batch size and learning rate we choose, we run all the CNN code above with the

correct parameters.

Figure 18. Final data run.

	47474

